Foreign Press Center Japan (FPCJ) Press Briefings

The Mysteries of Space Revealed by the Hayabusa2

(Image credit: A. Ikeshita)

(Image credit: JAXA)

April 30, 2021 @ online

Makoto Yoshikawa (JAXA Hayabusa2 Project)

Today's contents

- Project Outline
- Return to Earth
- Ryugu sample
- Future progress

(Progress since November 27, 2020)

Makoto Yoshikawa (JAXA Hayabusa2 Project)

Press briefing on November 27, 2020

Hayabusa2 Mission

- The 2nd Asteroid sample return mission in the world (following Hayabusa)
- The target asteroid : Ryugu, C-type near earth asteroid
- Science objective : Origin and evolution of the solar system and the life, the water and the organic matter at the beginning of the solar system
- Engineering objective : Technology that perform round-trip mission reliably

(Image credit: JAXA)

Hayabusa2 Spacecraft

From the launch to the Earth return

Hayabusa2 : Mission scenario

(image credit: illustrations including spacecraft by Akihiro Ikeshita, others by JAXA)

©Arakawa et al.,

Science 2020

(Image credit: JAXA et al.)

What we have known from the observations by the spacecraft

- Low density (1.19g/cm³) → Ryugu is a rubble pile object. (porosity is more than50%)
- Top shape → The spin period was probably about 3.5h in the past. (now 7.6h)
- Small absorption at $2.72\mu m \rightarrow hydrated$ mineral
- Black color (low albedo) \rightarrow carbon rich
- Large artificial crater \rightarrow small surface strength
- Easy to warm and cool \rightarrow highly porous
- Surface reddening \rightarrow approached the sun closely

changed from Morota et al. (2020) (©Univ. of Tokyo, JAXA)

Operation for re-entry terminal guidance

XTCM: Trajectory Correction Maneuver

Observation of the re-entry capsule fireball December 6, 2020

(movie)

Fireball observed in Coober Pedy (Image credit: JAXA)

10

Re-entry Capsule

Structure of re-entry capsule

Gas sampling

- □ The collected instrument module (I/M) is transported to the QLF (Quick Look Facility) and disassembled after safety checks.
- Remove the sample container and connect it to the gas sampling equipment.
- Collect gas from the sample container and perform mass spectrometry.

(credit:collected instrument module: JAXA Sample container removed, collecting the gas:JAXA/University of Tokyo/Kyushu University/JAMSTEC)

Successful sample acquisition from Ryugu

Photos of the inside of the chamber A in the sample catcher Dec. 15, 2020 (Image credit: JAXA)

At the time of Hayabusa (2010) ...

Samples of Ryugu

collection container

Samples of Ryugu in the observation containers

* Weight is the weight of the sample in each observation container. The weight of the separated pieces is not included.

(2nd touchdown)

diameter is 21 mm

Work of Initial Description and sample distribution Schedule (plan)

Spectral Profiles of Ryugu Return Sample

- Spectroscopy of bulk return sample has started as an initial description under non-destructive and non-contaminated conditions since January 2021
- Performed with FTIR (NIR continuous spectroscopy) and MicrOmega (NIR hyperspectral microscopy).
- The same features are found in both spectral profiles
 - 2.7µm absorption, related to water (-OH), the similar feature observed in NIRS3 spectrum
 - 3.4 μm absorption, related to organics (-CH) and/or carbonate (-CO₃)
- These features are the evidence that the return sample is originated from Ryugu.
- Indicating primitive sample in the solar system, containing water or carbon related materials

(waiting for in-depth analyses with higher accuracy and resolution)

room-A

Wavelength-selected image enhance (few) grains with specific composition, within bulk material. [Red] : OH-enriched grain © MicrOmega/IAS/CNES

Spectral Profiles of Ryugu Return Sample

3D movie by MicrOmega

- Observation down to sub-mm scale structures
- Identification of different compositional materials

Observed by MicrOmega 3D image emphasizing the presence of few grains with specific composition:
 [Red] A largely OH-enriched grain

V. Hamm Apr 2021

Hayabusa 2 mission

© MicrOmega/IAS/CNES

What we want to find out by sample analysis History of the universe

Material changes

Amino acid chirality asteroids molecular cloud \rightarrow protoplanetary disk planetesimals റ Left-handed (L-chiral) and rightdust handed (D-chiral) amino acids Organics accumulation The life on Earth uses left-handed metamorphism Transition of carbon material on the dust surface (L-chiral) amino acids.→Why? Earth 20 (Image credit: JAXA)

Clue to the origin of life

Extended mission

- The spacecraft is still operational.
- 50% of xenon, the fuel for ion engines, remains.

 $\overline{\nabla}$

To further exploration:

- The technical challenge of long-term space navigation
- A type of celestial body that has never been explored (30 m in size, 10 minutes in rotation period)
- Science and technology related to planetary defense

Summary

- The reentry capsule landed in Woomera, Australia on Dec.
 6, 2020. = 6-year mission completed successfully
- The amount of sample was about 5.4g. This is much higher than the planned 0.1g.
- Curation work is currently underway, and the initial analysis, which is a full-scale analysis, is scheduled to start in June of this year.
- The spacecraft is in operation for the next destination, 1998 KY26. Arrival is scheduled for 2031, 10 years later.

World first Mars return mission to uncover the mystery of the Martian moons, Phobos & Deimos

3rd sample return mission, following Hayabusa2

Aim to bring home a sample from Phobos

Goals

Uncover the origin of the Martian moons and increase understanding of planetary formation, and primordial transport of material between the inner & outer Solar System.

Understand conditions in the circus-martian environment and the evolution of the surface of Mars and its moons.

News

http://mmx.isas.jaxa.jp

@mmx_jaxa_en