FPCJ Briefing

Fukushima Daiichi Decontamination and Decommissioning -Current Status and Challenges-

March 4, 2021 Akira ONO

Chief Decommissioning Officer President of Fukushima Daiichi Decontamination and Decommissioning Engineering Company, Tokyo Electric Power Company Holdings, Inc.

Agenda

1. Water Management

Fuel Removal from Spent Fuel Pools
 Work toward Fuel Debris Retrieval
 Improved Work Environment

5. Striking a Balance between Reconstruction & Decommissioning

1. Water Management

Major issues surrounding water stored at Fukushima Daiichi

TEPCO

Decrease in the generation of contaminated water

As a result of measures such as roof covers and pavements around buildings in addition to the Ice Wall and sub-drain well system etc., contaminated water generation decreased to 140m³/day in 2020.

TEPCO

The milestone set in the Mid-and-Long-Term Roadmap (150m³/day) has been achieved.

Removal (Drying up) of stagnant water in the buildings

TEPCO

TEPCO

The high dose detected from zeolite sandbags at the basements of Process main bldg. (PMB) & High temperature incinerator bldg. (HTI)

In 2018, we investigated the basements of the two buildings and detected high dose rates.

In 2019, we reinvestigated using an underwater ROV, and the highest measurement from the sandbags in each basement was 3,000 and 4,400 mSv/h. A method for collecting the sandbags before drying up is being studied.

TEPCO Handling of the remaining sludge on the floors after drying up
At the buildings which underwent drying up, there remains sludge on the floors (The amount of radioactive materials is estimated to be 19trilion Bq)

We are studying a method for its collection, referring to the achievement at the Unit 1 turbine building.

The amount of radioactive materials^{×1}

Remainin drying up	ng sludge after D ^{×2}	1.9 E13 Bq (=19trillion Bq)		
Reference	Stagnant water (Units 1-3 Reactor Bldgs, PMB, HTI)	5.5 E14 Bq		
	Zeolite sand bags	3.6 E15 Bq		
	Sludge from decontamination apparatus	2.0 E17 Bq		

- *** 1** May change depending on the increased sample data
- **2** Estimate for the buildings which underwent drying up

Example at a mezzanine floor above the basement of Unit 1 turbine bldg.

Sludge collection by using a ROV & manual labor

 $\sim 1.1 \text{mSv/h}$

<Air dose rate> ~8.5mSv/h

Transportation plan of sludge generated from decontamination TEPCO apparatus The sludge from a decontamination apparatus (AREVA) which was operated temporally after the accident, is stored in D tank at PMB. As a precaution against a tsunami which might surpass the largest recorded one, the transportation of the sludge to a high place is being planned. Now that the design is finished, the extraction will be carried out in FY2023.

IIV317

2. Fuel Removal from Spent Fuel Pools

8/3/2020 10:23:32 AM

Overview of tasks toward fuel removal TEPCO Unit 4 **Units 1 & 2** Unit 3 $\overline{}$ **Removal of rubble & Installation of Storage & Fuel removal Decontamination etc.** fuel removal facility **Transportation** Unit 2 Unit 1 Unit 3 Removal to Removal to Removal completed on Feb. 28 start in FY2024 to 2026 start in FY2027 to 2028 Jun. 2011 Sep. 2011 **Front** chamber b. 2019 III g. 2

Method of fuel removal at Units 1 & 2

TEPCO

As the return of local residents and reconstruction efforts make progress, we put premium on their safety and peace of mind by preventing radioactive dust from scattering.

Rubble accumulated over the spent fuel pool at Unit 1

Removing layers of rubble over the spent fuel pool in the south side is a big challenge.

TEPCO

Figure 1 Refueling floor layout plan

Illustration of the ceiling crane & fuel handling machine (view from A)

Condition of the collapsed roof

South-side collapsed roof (A)

Measures to reduce the risk of rubble falling at Unit 1

In the lead-up to the rubble removal on the south side, measures have been taken to reduce the risks of possible rubble falling into the spent fuel pool (SFP) area.

① Installation of SFP gate cover (Mar. 2020)

TEPCO

- Reducing the risks of water loss due to the damage to the SFP gate caused by falling roof frames and other rubble.
- **(2)** Installation of protective bag on SFP (Jun. 2020)
- Reducing the impact on the fuel assemblies in the pool caused by falling frames and other rubble.
- 3 Installation of prop for FHM (Oct. 2020), 4 Installation of prop for crane (Nov. 2020)
- Reducing the risk of dust scattering and impact on fuel assemblies caused by falling roof frames.

TEPCO Toward the installation of the large cover at Unit 1

Prior to installation of the large cover, work to dismantle the previous, remaining part of the cover commenced in December 2020.
The installation of the large cover will start in the first half of FY2021.

Current Status

Investigations inside Unit 2 reactor building

In June 2020, the inside of the Unit 2 spent fuel pool was investigated for the first time since the accident. No obstacle to hinder the upcoming removal was detected
Dose measurement on the refueling floor commenced this Feb.

Investigation inside the spent fuel pool (Jun. 2020)

TEPCO

Dose measurement on the refueling floor (from Feb. 2021)

Yard arrangement and dose measurement are underway
 After the installation of the platform, an opening will be created on the south wall to be used for the fuel removal

TEPCO

Removal of buried objects underway (Digging & Removal)

TEPCO Completion of fuel removal at Unit 3 (Feb. 28)

We overcame the issue of deformed handles and hindrance by rubble etc.We succeeded in removing 566 fuel assemblies in all ahead of scheduled.

Removal of fuel with a deformed handle (from Feb. 3)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved

3. Work toward Fuel Debris Retrieval

IRID has contributed to some work shown here

Assumed distribution of fuel debris

TEPCO

Time	Investigation	Time	Investigation	Time	Investigation
Feb. to May. 2015	Investigation of reactor core using muon analysis method	Mar. to Jul. 2016	Investigation of RPV using muon analysis method	May to Sep. 2017	Investigation of RPV using muon analysis method
Apr. 2015	Investigation on the 1 st floor grating using shape-changing robots (outside pedestal)	Jan. to Feb. 2017	Distortion of the grating found by investigation using a telescopic guide pipe	Jul. 2017	Investigation inside the PCV using a remotely operated
Mar. 2017	Investigation of the lower part of PCV by hanging sensor	Jan. 2018	Shooting the deposits at the bottom, using a camera attached to the tip of the modified telescopic guide pipe	vehicle ※The analysis of accident	
	grating (outside pedestal)	Feb. 2019	Contacting and shooting the deposits using a finger-like device attached to the tip of the telescopic guide pipe	progre in.	ession is also factored

Trial retrieval to start at Unit 2 in the near future

秘密情報 目的外使用·複数·開示量止 東京電力术空下PKX2 FPS程度是Pawer Company Holdings, Inc. All Rights Reserved.

First Fuel debris retrieval to start at Unit 2

TEPCO

The progress in reactor internal investigations, improvement of the environment and there being no interferences to fuel removal are the main factors in Unit 2 being chosen.

		Unit 1	Unit 2	Unit 3
Safety	Dose at the workplace	High (approx. 600mSv/h)	Low (approx. 5mSv/h)	Slightly high (approx. 10mSv/h)
	Containment of radioactive materials	Slightly high airtightness	High airtightness (no hydrogen explosion and sound building integrity)	Low airtightness
Certainty	Condition of debris	No information	Information obtained	Information obtained
	Access route	No information	Information obtained	Information obtained
Obstacles		Removal of high- dose pipes is required	Workplace improved	Decrease of water level inside PCV is required
Interference to fuel removal		Yes	No	Yes

TEPCO Fuel debris retrieval at Unit 2

The first trial retrieval to be rescheduled for FY2022 due to the corona virus in the U.K.

Stepwise expansion of the retrieval scale to follow after the first trial.

TEPCO Major Work Processes until 2031

We will conduct studies and other internal investigations inside the PCVs and RPVs.

> At Unit 1, a boat-type submersible device will be used in the near future.

The method for expanding the scale of retrieval will be determined based on the knowledge obtained through the trial retrieval at Unit 2.

* Assuming that studies will be carried out giving precedence to Unit 3, and Unit 1 will be studied thereafter. ©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved

Conceptual image of equipment for large-scale retrieval

Design, manufacturing and installation of fuel debris retrieval equipment, safety systems, fuel debris temporary storage facilities etc. will be carried out.

In order to secure the related space on the site, we may dismantle some of the existing facilities.

TEPCO

4. Improved Work Environment

Reduced radiation dose & increased green zone

ΤΞΡΟ

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved

TEPCO

The New Norm at Fukushima Daiichi

Thermographic measurement at entrance

All employees wearing masks

©Tokyo Electric Power Company Holq

5. Striking a Balance between Reconstruction & Decommissioning

CTokyo Electric Power Company Holdings, Inc. All Rights Reserve

TEPCO Two-way communications

- We strive to gain the understanding and trust of local residents by holding various kinds of dialogues and interactions.
- > The number of people visiting Fukushima Daiichi site topped 18,000 in FY2019.
- In 2018, a virtual tour started in TEPCO's website and a decommissioning museum opened in a nearby town.

